# XD9713 <br> Explosion-proof temperature and humidity sensor <br> User Manual 

File Version: V24.4.2


XD9713 using the standard ,easy access to PLC, DCS and other instruments or systems for monitoring 温 humidity state quantities.The internal use of high-precision sensing core and related devices to ensure high reliability and excellent long-term stability, can be customized
RS232,RS485,CAN,4-20mA,DC0~5V10V,ZIGBEE,Lora,WIFI,GPRS and other output methods.

## Technical Parameters

ShanghaiXUNCHIP Industrial Co., Ltd XUNCHIP Brand Division
Page1

| Technical parameter | Parameter value |
| :--- | :--- |
| Brand | XUNCHIP |
| Interface | RS485/4-20mA/DC0-10V |
| Power | DC6~24V 1A |
| Power | DC12~24V 1A |
| Running temperature | $-30 \sim 85^{\circ} \mathrm{C}$ |
| Working humidity | $5 \%$ RH $\sim 90 \% \mathrm{RH}$ |

## Product Selection

Product DesignRS485,4-20mA,DC0-10VMultiple output methods, the products are divided into the following models depending on the output method.

| Product model | output method |
| :--- | :--- |
| XD9713B | RS485 总线 |
| XD9713M | $4-20 \mathrm{~mA}$ |
| XD9713V10 | DC0-10V |

## Product Size


※ Manual measurement, please refer to the actual product

## Communication protocols

## All operation commands are hexadecimal data, and the default communication baud rate: 9600,8,N,1

## Read the data function code 03

QUERY FRAME (HEXADECIMAL), SEND EXAMPLE: QUERY 1 \# DEVICE 1 DATA, THE HOST COMPUTER SENDS THE COMMAND: 01030000000184 OA.

| Command <br> descriation | Device <br> address | Feature <br> codes | Start <br> address | The length <br> of the data | Checksum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Command <br> format | 01 | 03 | 0000 | 0001 | 840 A |

For the correct query frame, the device responds with data: 010302007979 A6 in the following format:

| Command <br> description | Device <br> address | Feature <br> codes | Data 1 | Data 2 | Checksum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Command <br> format | 01 | 03 | 02 | 0079 | 79 A6 |

Data description: The data in the command is hexadecimal, taking data 1 as an example, 0079 is converted to decimal value is 121 , Assuming the data magnification is 100 , the true value is $121 / 100=1.21$, and so on.

## A table of common data addresses

| Configure <br> the address | Register <br> address | illustrate | Data type | Range of <br> values |
| :--- | :---: | :--- | :--- | :--- |
| 40001 | 0000 | 1\#temperature and <br> humidity registers | Read only | $0 \sim 65535$ |
| 40101 | 0064 | Model number | Read/Write | $0 \sim 65535$ |
| 40102 | 0065 | The totalnumber of <br> measurement points | Read/Write | $1 \sim 20$ |
| 40103 | 0066 | Device address | Read/Write | $1 \sim 249$ |
| 40104 | 0067 | Baud rate | Read/Write | $0 \sim 6$ |
| 40105 | 0068 | Communication mode | Read/Write | $1 \sim 4$ |
| 40106 | 0069 | Protocol type | Read/Write | $1 \sim 10$ |

## Wiring

## RS485 wiring

| Red | VIN |
| :--- | :--- |
| Green | GND |
| Yellow | A+/H |
| Blue | B-/T |



## 4~20mA wiring



0~10V wiring

| Red | VIN | PWR+ | Public end | DC24V |
| :---: | :---: | :---: | :---: | :---: |
| Green | GND |  |  |  |
| Yellow | A+/H |  |  |  |
| Blue | B-/TUnused |  |  |  |

In the case of broken wires, wire the wires as shown in the figure. If the product itself has no leads, the core color is for reference.

## How to use?

The temperature and humidity sensor is suitable for accurate industries such as farms, gas stations, mining industry, and archives, and can also accurately detect complex work in harsh environments


Application solution

## ■ RS485 wiring mode



■ Current/voltage application schemes


Product List


# 1 explosion-proof temperature and humidity sensor is delivered according to the user's selection 

## Communication Protocol

The product uses RS485 MODBUS-RTU standard protocol format, all operation or reply commands are hexadecimal data. The default device address is 1 when the device leaves the factory, and the module or NON-Recorder default baud rate is $9600,8, \mathrm{n}, 1$,but data recorder default baud rate is 115200 .

1. Read data (function code $0 \times 03$ )

Inquiry frame (hexadecimal), sending example: query 1 data of 1 \# device, the upper computer sends the command: 010300000001840 A .

| Address | Function Code | Start Address | Data Length | Check Code |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 03 | 0000 | 0001 | 840 A |

For the correct query frame, the device will respond with data: 010302007979 A6 , response format:

| Address | Function Code | Length | Data 1 | Check Code |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 03 | 02 | 0079 | 79 A6 |

Data description: The data in the command is hexadecimal, take data 1 as an example, 0079 is converted to decimal value as 121 , assuming the data magnification is 100 , then the real value is $121 / 100=1.21$, Others and so on.

## 2. Common data address table

| Configuration <br> Address | Register Address | Register <br> Description | Data Type | Value Range |
| :--- | :--- | :--- | :--- | :--- |
| 40001 | 0000 | 温 humidity | Read Only | $0 \sim 65535$ |
| 40101 | 0064 | Model Code | Read/Write | $0 \sim 65535$ |

ShanghaiXUNCHIP Industrial Co., Ltd XUNCHIP Brand Division
Page9

| 40102 | 0065 | total number of <br> measuring points | read/write | $1 \sim 20$ |
| :--- | :--- | :--- | :--- | :--- |
| 40103 | 0066 | device address | read/write | $1 \sim 249$ |
| 40104 | 0067 | baud rate | read/write | $0 \sim 6$ |
| 40105 | 0068 | communication <br> mode | read/write | $1 \sim 4$ |
| 40106 | 0069 | protocol type | read/write | $1 \sim 10$ |

## 3 Read and modify device address

(1) Read or query device address

If you don't know the current device address and there is only one device on the bus, you can query the device address through the commandFA 0300660001719 E .

| Device Address | Function Code | Start Address | Data Length | Check Code |
| :--- | :--- | :--- | :--- | :--- |
| FA | 03 | 0066 | 0001 | 719 E |

FA means 250 is the general address, when you don't know the address, you can use 250 to get the real device address, 0066 is the device address register.

For the correct query command, the device will respond, for example, the response data is: 010302 000179 84, and its format parsing is shown in the following table:

| Device Address | Function Code | Start Address | Model Code | Check Code |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 03 | 02 | 0001 | 7984 |

In the response data, the first byte 01 represents the real address of the current device.

## (2) Change device address

For example, if the current device address is 1 and we want to change it to 02 , the command is: 0106 00660002 E8 14.

| Device Address | Function Code | Register Address | Target Address | Check Code |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 06 | 0066 | 0002 | E8 14 |

After the change is successful, the device will return the information: 020600660002 E 827 , and its format analysis is shown in the following table:

| Device Address | Function Code | Register Address | Target Address | Check Code |
| :--- | :--- | :--- | :--- | :--- |
| 02 | 06 | 0066 | 0002 | E8 27 |

In the response data, after the modification is successful, the first byte is the new device address. Generally, after the device address is changed, it will take effect immediately. At this time, the user needs to change the query command of his software accordingly. .

## 4 Read and modify baud rate <br> (1) Read baud rate

The default factory baud rate of the device is 9600 . If you need to change it, you can change it according to the following table and the corresponding communication protocol. For example, to read the baud rate ID of the current device, the command is: 01030067000135 D 5 , the format is parsed as follows.

| Device Address | Function Code | Start Address | Data Length | Check Code |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 03 | 0067 | 0001 | 35 D5 |

Read the baud rate code of the current device. Baud rate code: 1 is $2400 ; 2$ is $4800 ; 3$ is $9600 ; 4$ is 19200; 5 is $38400 ; 6$ is 115200 .

For the correct query command, the device will respond, for example, the response data is: 010302

0003 F8 45, and its format analysis is shown in the following table:

| Device Address | Function Code | Data Length | Baud Rate Code | Check Code |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 03 | 02 | 0003 | F8 45 |

According to the baud rate code, 03 is 9600 , that is, the baud rate of the current device is 9600 .

## (2) Change the baud rate

For example, change the baud rate from 9600 to 38400 , that is, change the code from 3 to 5 , the command is: 010600670005 F8 16 .

| Device Address | Function Code | Register Address | Target Baud Rate | Check Code |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 06 | 0067 | 0005 | F8 16 |

Change the baud rate from 9600 to 38400 , that is, change the code from 3 to 5 . The new baud rate will take effect immediately, and the device will lose response at this time, and the baud rate of the device needs to be checked accordingly Modified.

## 5 Read and modify correction value <br> (1) Read correction value

When there is an error between the data and the reference standard, we can reduce the display error by adjusting the correction value. The correction difference can be modified in a range of plus or minus 1000 , that is, the value range is $0-1000$ or $64535-65535$. For example, when the displayed value is too small by 100, we can correct it by adding 100. The command is: 010300 6B 0001 F5 D6. In the command, 100 is hexadecimal $0 \times 64$; If you need to reduce it, you can set a negative value, such as -100 , the corresponding hexadecimal value is FF 9C, the calculation method is $100-65535=65435$, and then converted to hexadecimal, it is $0 x$ FF 9C. Device The correction value starts from 006 B . We take the first parameter as an example to illustrate. When there are multiple parameters, the correction value is read and modified in the same way.

| Device Address | Function Code | Start Address | Data Length | Check Code |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 03 | $006 B$ | 0001 | F5 D6 |

For the correct query command, the device will respond, for example, the response data is: 010302 0064 B9 AF, and its format parsing is shown in the following table:

| Device Address | Function Code | Data Length | Correction Value | Check Code |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 03 | 02 | 0064 | B9 AF |

In the response data, the first byte 01 represents the real address of the current device, and 006 B is the first state correction value register. If the device has multiple parameters, other parameters operate in the same way as this The same, generally temperature and humidity have this parameter, and lighting generally does not have this parameter.

## (2) Change the correction value

For example, if the current state is too small, we want to add 1 to its real value, and add 100 to the current value. The correction operation command is: 010600 6B 0064 F9 FD .

| Device Address | Function Code | Register Address | Target Address | Check Code |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 06 | $006 B$ | 0064 | F9 FD |

After the operation is successful, the device will return the information: 0106006 B 0064 F9 FD , after the successful change, the parameters will take effect immediately.

For example, the range is $-30 \sim 80$, the analog output is $4 \sim 20 \mathrm{~mA}$ current signal, and current The calculation relationship is as shown in the formula: $\mathrm{C}=(\mathrm{A} 2-\mathrm{A} 1)^{*}(\mathrm{X}-\mathrm{B} 1) /(\mathrm{B} 2-\mathrm{B} 1)+\mathrm{A} 1$, where A 2 is range upper limit, A 1 is the lower limit of the range, B 2 is current output range upper limit, B 1 is the lower Shanghai XUNCHIP Industrial Co., Ltd XUNCHIP Brand Division
Page11
limit, X is the currently read value, and C is the calculated current value. The list of commonly used values is as follows:

| current(mA) | Value () | Calculation Process |
| :--- | :--- | :--- |
| 4 | -30 | $(80-(-30))^{*}(4-4) \div(20-4)+-30$ |
| 5 | -23.125 | $(80-(-30))^{*}(5-4) \div(20-4)+-30$ |
| 6 | -16.25 | $(80-(-30))^{*}(6-4) \div(20-4)+-30$ |
| 7 | -9.375 | $(80-(-30))^{*}(7-4) \div(20-4)+-30$ |
| 8 | -2.5 | $(80-(-30))^{*}(8-4) \div(20-4)+-30$ |
| 9 | 4.375 | $(80-(-30))^{*}(9-4) \div(20-4)+-30$ |
| 10 | 11.25 | $(80-(-30))^{*}(10-4) \div(20-4)+-30$ |
| 11 | 18.125 | $(80-(-30))^{*}(11-4) \div(20-4)+-30$ |
| 12 | 25 | $(80-(-30))^{*}(12-4) \div(20-4)+-30$ |
| 13 | 31.875 | $(80-(-30))^{*}(13-4) \div(20-4)+-30$ |
| 14 | 38.75 | $(80-(-30))^{*}(14-4) \div(20-4)+-30$ |
| 15 | 45.625 | $(80-(-30))^{*}(15-4) \div(20-4)+-30$ |
| 16 | 52.5 | $(80-(-30))^{*}(16-4) \div(20-4)+-30$ |
| 17 | 59.375 | $(80-(-30))^{*}(17-4) \div(20-4)+-30$ |
| 18 | 66.25 | $(80-(-30))^{*}(18-4) \div(20-4)+-30$ |
| 19 | 73.125 | $(80-(-30))^{*}(19-4) \div(20-4)+-30$ |
| 20 | 80 | $(80-(-30))^{*}(20-4) \div(20-4)+-30$ |

As shown in the above formula, when measuring 8 mA , current current is 31.5 。

For example, the range is $-30 \sim 80$, the analog output is $0 \sim 10 \mathrm{~V}$ DC0-10Vvoltage signal, and DC0-10Vvoltage The calculation relationship is as shown in the formula: $\mathrm{C}=(\mathrm{A} 2-\mathrm{A} 1)$ * $(\mathrm{X}-\mathrm{B} 1) /(\mathrm{B} 2-\mathrm{B} 1)+$ A1, where A2 is range upper limit, A 1 is the lower limit of the range, B 2 is DC0-10Vvoltage output range upper limit, B 1 is the lower limit, X is the currently read value, and C is the calculated $\mathrm{DC} 0-10 \mathrm{~V}$ voltage value. The list of commonly used values is as follows:

| DC0-10Vvoltage(V) | Value () | Calculation Process |
| :--- | :--- | :--- |
| 0 | -30 | $(80-(-30))^{*}(0-0) \div(10-0)+-30$ |
| 1 | -19 | $(80-(-30))^{*}(1-0) \div(10-0)+-30$ |
| 2 | -8 | $(80-(-30))^{*}(2-0) \div(10-0)+-30$ |
| 3 | 3 | $(80-(-30))^{*}(3-0) \div(10-0)+-30$ |
| 4 | 14 | $(80-(-30))^{*}(4-0) \div(10-0)+-30$ |
| 5 | 25 | $(80-(-30))^{*}(5-0) \div(10-0)+-30$ |
| 6 | 36 | $(80-(-30))^{*}(6-0) \div(10-0)+-30$ |
| 7 | 47 | $(80-(-30))^{*}(7-0) \div(10-0)+-30$ |
| 8 | 58 | $(80-(-30))^{*}(8-0) \div(10-0)+-30$ |
| 9 | 69 | $(80-(-30))^{*}(9-0) \div(10-0)+-30$ |
| 10 | 80 | $(80-(-30))^{*}(10-0) \div(10-0)+-30$ |

As shown in the above formula, when measuring 5 V , current DC0-10Vvoltage is 55 。

## Disclaimer

This document provides all information about the product, does not grant any license to intellectual property, does not express or imply, and prohibits any other means of granting any intellectual property
Shanghai XUNCHIP Industrial co., Ltd XUNCHIP Brand Division
Page12
rights, such as the statement of sales terms and conditions of this product, other issues. No liability is assumed. Furthermore, our company makes no warranties, express or implied, regarding the sale and use of this product, including the suitability for the specific use of the product, the marketability or the infringement liability for any patent, copyright or other intellectual property rights, etc. Product specifications and product descriptions may be modified at any time without notice.

## Contact Us

Brand: XUNCHIP
Address: Room 208, Building 8, No. 215, Nandong Road, Baoshan District, Shanghai, Xinxin Brand Business Department

Chinese site: http://www.xunchip.com
International site: http://www.xunchip.com
SKYPE: soobuu
E-mail: sale@sonbest.com
Tel: 86-021-51083595 / 66862055 / 66862075 / 66861077

