SM2130B-CH2O

RS485 formaldehyde sensor

Product Overview

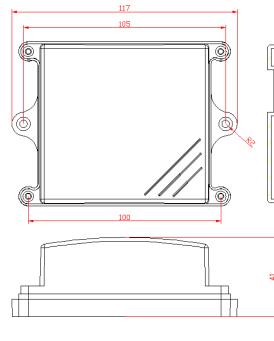
SM2130B-CH2O formaldehyde sensor uses electrochemical principle to detect CH2O in air, which has good selectivity and stability. Built-in temperature sensor for temperature compensation.

The product adopts RS485 interface and standard MODBUS-RTU protocol, which can realize multi-point simultaneous monitoring, networking and remote transmission. Support secondary development, users only need to use any serial communication software to realize module data query and setting according to our communication protocol.

Parameters

Specifications	Value
Measuring range	0-5ppm
Resolution	0.001ppm
Interference gas	Alcohol, carbon monoxide, etc.
Accuracy	± 5 %
Input voltage	DC6~24V
power	0.3W
Working environment	-30°℃~85° ℃
Communication method	RS485
Dimensions	See dimensions

http:// www.sonbus.com



Package dimensions

The device comes with a 1 meter long 4-core cable.

Wire color	Pin	Explanation
Red	V+	Power +
Green	V-	Power -
Yellow	A+	RS485 A+
Blue	B-	RS485 B-

Put 1

Publication Order Number: SM2130B-CH2O

Communication protocol

Equipment operation or Reply All commands are hexadecimal data. The default communication baud rate: 9600,8, n, 1.

Read the data.

Command	Device	Function	Start	Data	Check	
	Address	Code	Address	Length	Code	
Format	01 03 00 00 00 01 C4 0					
Example	01 03 00 00 00 01 C4 0B					

Response format and examples.

Command	Device Address	Function Code	Data Length	Data	Check Code
Format	01	03	02	06 BE	3B 94
Example	01 03 02 06 BE 3B 94				

In the above example response data: Since the length of the measuring point data is two bytes, for example, the data is 06 BE, and the decimal number is 1:726. Since the module resolution is 0.001, the value needs to be divided by 1000, that is, the actual value. It is 1.726 ppm.

The user can also read the corresponding data according to the above protocol format according to the register address. The list of available registers for the product is as follows:

Address	Register	Register	Data	value
	address	description	type	range
40001	00 00	Sensor data	uint	0-65535
40102	00 66	Device	uint	0-65535
		address		
40103	00 67	Baud rate	uint	0-65535

Read the device address.

If you do not know the current device address and there is only one device on the bus, you can use this command to query the current device address.

Command	Device	Function	Start	Data	Check	
	Address	Code	Address	Length	Code	
Format	FA 03 00 00 00 01 D0 5E					
Example	FA 03 00 00 00 01 D0 5E					

Response format and examples.

Command	Device	Function	Data	Data	Check		
	Address	Code	Length		Code		
Format	01	01 03 02 07 12 3A 79					
Example	01 03 02 07 12 3A 79						

Change device address.

Command	Device	Function	Start	Data	Check

SONBEST Components Industries, SHANGHAI, CHINA http://www.sonbus.com November, 2019 – Rev. 3

	Address	Code	Address	Length	Code	
Format	01	06	00 66	00 02	E8 14	
Example	01 06 00 66 00 02 E8 14					

The above example changes device address 1 to 2.

Response format and examples.

Command	Device	Function	Data	Data	Check
	Address	Code	Length		Code
Format	02 06 00 66 00 02 E8 27				
Example	02 06 00 66 00 02 E8 27				

Read and modify baud rate

Read the baud rate. The default factory baud rate of the device is 9600. If you need to change it, you can change it according to the following table and the corresponding communication protocol.

Baud rate	Code
2400	1
4800	2
9600	3
19200	4
38400	5
115200	6

Read baud rate.

Read baud rate send command description.

Command	Device	Function	Start	Data	Check
	Address	Code	Address	Length	Code
Format	01	03	00 67	00 01	35 D5
Example	01 03 00 67 00 01 35 D5				

Response format and examples.

Command	Device	Function	Data	Data	Check
	Address	Code	Length		Code
Format	01	03	02	00 03	F8 45
Example	01 03 02 00 03 F8 45				

Change baud rate.

Command	Device	Function	Start	Data	Check
	Address	Code	Address	Length	Code
Format	01	06	00 66	00 05	F8 16
Example	01 06 00 66 00 05 F8 16				

The above example changes the baud rate from 9600 to 38400, which changes the code from 3 to 5.

Response instructions. After a successful change, the new baud rate will take effect immediately, at which point the device will lose its response or the response will be incorrect.

Correction value

When the data has an error with the reference standard, we can

```
Publication Order Number:
SM2130B-CH2O
```

reduce the display error by adjusting the "CH2O correction value". The correction difference can be modified to be plus or minus 1000, that is, the value range is 0-1000 or 64535-65535.

For example, when the display value is 1 degree smaller, we correct by increasing 1 degree. Since the product resolution is 0.01, in actual communication, the value 1 is represented by 100 in hexadecimal 0x64; if it needs to be reduced, it can be set to a negative value, such as -1 degree, corresponding to the sixteen system value. FF 9C, which is calculated as 100-65535=65435, and then converted to hexadecimal to 0x FF 9C.

Command	Device	Function	Start	Data	Check
	Address	Code	Address	Length	Code
Format	01	06	00 6B	00 64	F9 FD
Example	01 06 00 6B 00 64 F9 FD				

After a successful change, the device responds.

Command	Device	Function	Start	Data	Check
	Address	Code	Address		Code
Format	01	06	00 6B	00 64	F9 FD
Example	01 06 00 6B 00 64 F9 FD				